B G1025 Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: EC403

Course Name: MICROWAVE & RADAR ENGINEERING

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Explain the significance of re-entrant cavities in microwave tubes. What are the different types of re-entrant cavities?
 - b) With the help of a schematic structural diagram explain the working of a two (10) cavity Klystron Amplifier. Also give its typical specifications.
- 2 a) How oscillation generate in reflex klystron? (5)
 - b) With the help of applegate diagram describe the bunching process of two cavity (10) klystron amplifier and derive the bunching parameter also.
- 3 a) A reflex Klystron operates under following Conditions: $V_0 = 600 \text{V}$, Length L=1mm, $R_{sh} = 15 \text{K}\Omega$, e/m =1.759x10¹¹, $f_r = 9 \text{GHz}$ The tube is oscillating at f_r at the peak of the n= 2 mode or $1\frac{3}{4}$ mode. Assume that the transit time through the gap and beam loading can be
 - a) Find the value of the repeller voltage V_R

neglected.

- b) Find the direct current necessary to give a microwave gap voltage of 200V
- c) What is the electronic efficiency under this condition?
- b) Define Velocity modulation and how velocity modulation changes to current (10) density modulation in Klystron Amplifier:-

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) What are different types of waves generated in a TWT after interaction with (5) electron beam and RF signal:-.
 - b) A travelling wave tube (TWT) operates under the following parameters: Beam voltage, V_0 =3kV; Beam current, I_0 =30mA; Characteristics of helix, Z_0 =10 Ω ; Circuit length, N=50; Frequency, f=10GHz. Determine: (a) the gain parameter, C (b) the output power gain, A_p in decibels and (c) all four propagation constants.
- 5 a) Draw the block diagram of a typical microwave bench setup and label all the (5)

В		G1025 Page	s: 2
		parts. What are the parameters that can be measured using the setup?	
	b)	With a schematic describe the operation of a four port circulator. Obtain the	(10)
		simplified S matrix of a perfectly matched, lossless four port circulator	
6 a	a)	Show that the magnitude of the velocity fluctuation of the electron beam is	(5)
		directly proportional to the magnitude of the axial electric field in a helix TWT	
	b)	Derive the expression of scattering matrix for directional coupler.	(10)
		PART C	
7	a)	Answer any two full questions, each carries 20 marks. Derive the minimum detectable signal of a RADAR	(5)
	b)	a) A certain silicon microwave transistor has the following parameters.	(7)
		Reactance X_c =1 Ω , Transit time cut off frequency f_r =4GHz, Maximum electric	
		field $E_{m=}1.6x10^5 V/cm$, Saturation drift velocity $V_s = 4x10^5 cm/s$. Determine the	
		maximum allowable power transistor can carry.	
		b) How tunnel diode can be used as circulator.	
	c)	What are low noise front ends? Describe in detail the utility of low noise front	(8)
		ends.	
8	a)	What is Doppler effect. Derive the equation for doppler efficiency.	(5)
	b)	Explain in detail the principle of a GUNN diode. Draw the I V characteristics.	(7)
	c)	Derive the Radar range equation.	(8)
9	a)	Explain the basic principles of radar system.	(5)
	b)	(i) Show that the product of the maximum unambiguous range R_{un} and the first	(3)
		blind speed v_1 is equal to c $\lambda/4$.	
		(ii) A guided missile tracking radar has the following specifications	(4)
		Transmitted Power = 400 kW ; Pulse repetition frequency = 1500 pps ; Pulse	
		width = $0.8 \mu sec$	
		Determine Unambiguous range, Duty cycle, Average power and suitable	
		bandwidth of the radar.	
	c)	(i) Prove that decrease in drift velocity with increasing electric field can lead to	(5)
		the formation of a high field domain for microwave generation and	
		amplification:-	
		(ii) A certain silicon microwave transistor has the following parameters:	
		Reactance = 1Ω , Transit-time cut off frequency = 4 GHz,	(3)
		Maximum electric field = 1.6×10^5 V/cm, Saturation drift velocity = 4×10^5	
		cm/s. Determine the maximum power that the transistor can carry	
